Abstract
Decentralized electrical power systems, driven by variable renewable energy sources such as solar PV and wind, have the potential to provide accessible and sustainable energy, contributing to the realization of a zero-carbon transition. However, these sources are susceptible to extreme weather conditions, presenting a challenge to the reliability of the power system. With abundant resources and a significant rural population lacking access to electricity, Africa has emerged as a key area for research on variable renewable energy-based electricity generation. Despite this focus, there remains a substantial gap in understanding at regional-scale the potential and variability of solar and wind power across various time scales, as well asthe impact of available resource synergy. Thisstudy aims to bridge this knowledge gap by conducting comprehensive simulations of hybrid wind and solar energy systems, both on-grid and off-grid, across 20 geographically diverse locations in Kenya. Using high-resolution hourly time step data, we examine the effect of resource complementarity on system reliability at varying time scales: daily, monthly and annually. The study findings shows the available VRE resource exhibit moderate tendency for complementarity, and optimizing their deployment can reduce hourly variability by 20%, significantly enhancing supply reliability, especially in the northern and eastern regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.