Abstract
Sleep disturbance is bidirectionally associated with increased risks of Alzheimer's disease and other tauopathies. While the sleep-wake cycle regulates interstitial and cerebrospinal fluid (CSF) tau levels, the underlying mechanisms remain unknown. Understanding these mechanisms is crucial given evidence indicates that tau pathology spreads through neuron-to-neuron transfer, involving the secretion and internalization of pathological tau forms. Here, we combine in vitro, in vivo and clinical methods to reveal a pathway by which changes in body temperature (BT) over the sleep-wake cycle modulate extracellular tau levels. In mice, higher BT during wakefulness and sleep-deprivation increased CSF and plasma tau levels, while also upregulating unconventional protein secretion pathway-I (UPS-I) components, including (i) intracellular tau dephosphorylation, (ii) caspase-3-mediated cleavage of tau (TauC3) and (iii) its membrane translocation through binding to PIP2 and syndecan-3. In humans, the increase in CSF and plasma tau levels observed post-wakefulness correlated with BT increase during wakefulness. By demonstrating that sleep-wake variation in BT regulates extracellular tau levels, our findings highlight the importance of thermoregulation in linking sleep disturbances to tau-mediated neurodegeneration, and the preventative potential of thermal interventions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have