Abstract

Under the presence of temperature gradient (TG) on a nanotrack, it is necessary to investigate the skyrmion dynamics in various magnetic systems under the combined effect of forces due to magnonic spin transfer torque thermal STT (), entropic difference as well as thermal induced dipolar field (DF). Hence, in this work, the dynamics of skyrmions in ferromagnets (FM), synthetic antiferromagnets (SAF), and antiferromagnets (AFM) have been studied under different TGs and damping constants (). It is observed that plays a major role in deciding the direction of skyrmion motion either towards the hotter or colder side in different magnetic structures. Later, FM skyrmion based logic device is proposed that consists of a cross-coupled nanotrack, where the skyrmions on horizontal and vertical nanotrack are controlled by exploiting TG and electrical STT (eSTT), respectively by taking the advantages of thermal induced skyrmion Hall effect (SkHE). The proposed device performs AND and OR logic functionalities simultaneously, when the applied current density is Moreover, the proposed device is also able to exhibit the half adder functionality by tuning the applied current density to The total energy consumption for AND and OR logic operation and half adder are 33.63 fJ and 25.06 fJ, respectively. This paves the way for the development of energy-efficient logic devices with ultra-high storage density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.