Abstract
Phase stability in nanoscale pure zirconia and 9.5 mol.% yttria-doped zirconia (YDZ) thin films was studied by in-situ transmission electron microscopy. Oxygen vacancies are found to play a significant role in determining the microstructure and phase evolution. Pure zirconia thin films of ∼52 nm thickness were stabilized without any dopants at room temperature, whereas they transformed into a tetragonal phase upon heating to 400°C. On the other hand, 9.5% yttria doping enables stabilization of the cubic structure regardless of grain growth. Annealing of amorphous YDZ films in air (oxygen-rich) leads to tetragonal phase formation, whereas ultrahigh vacuum (oxygen-deficient) annealed samples display a cubic phase at high temperature. Detailed discussions on the effects of initial microstructure, oxygen deficiency, aliovalent doping and thickness are presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have