Abstract

The adverse health effects of haze and particle-bound contaminants in China have recently caused increasing concern, and particle size plays a significant role in affecting human exposure to haze-correlated pollutants. To this background, size-segregated particulate samples (nine size fractions (<0.4, 0.4–0.7, 0.7–1.1, 1.1–2.1, 2.1–3.3, 3.3–4.7, 4.7–5.8, 5.8–9.0 and > 9.0 μm) were collected in three scale-gradient cities in northern China and analysed for a series of parent, oxygenated and chlorinated polycyclic aromatic hydrocarbons (PAHs, O-PAHs and Cl-PAHs). The total geometric mean concentrations of PAHs and O-PAHs for Beijing, Zhengzhou and Xinxiang were 98.1 and 27.2, 77.9 and 77.5, 41.0 and 30.7 ng m−3, respectively, which were 50–200 times higher than those for Cl-PAHs (0.5, 0.7 and 0.4 ng m−3). Though unimodal size-distribution patterns were found for all these contaminants for these three cities, PAHs represented distinctly higher concentration levels around the peak fraction (0.7–2.1 μm) than O-PAHs and Cl-PAHs. With 4–6 ring PAHs as dominant components in all samples, the percentage proportion of 2–3 ring PAHs (ranging from 1% to 26%) generally increased with particle size increasing, implying the sources of these compounds varied little among the 9 size fractions in all three cities. The International Commission on Radiological Protection (ICRP) model and permeability coefficient method were synchronously applied to the size-segregated data for inhalation and dermal exposure assessment to intensively estimate the human exposure doses to airborne PAHs. Further, the incremental lifetime cancer risk (ILCR) was calculated and it’s found that ILCR from inhalation was higher than that from dermal uptake for children and adults in Beijing and Zhengzhou, while the ILCR for Xinxiang presented a contrary pattern, revealing dermal uptake to be an equally significant exposure pathway to airborne PAHs compared to inhalation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.