Abstract
Analytical models for size-dependent melting temperature Tm(D), melting enthalpy DeltaHm(D), and surface energy gammasv(D) of metallic nanowires have been proposed in terms of the unified nanothermodynamical model where D denotes the diameter of nanowire. As D decreases, Tm(D), DeltaHm(D), and gammasv(D) functions are found to decrease almost with the same size-dependent trend. Due to the inclusion of the effect of dimensionality, the developed model can be applied to other low-dimensional systems. It is found that the ratio of depression of these thermodynamic parameters for spherical nanoparticle, nanowire, and thin film is 3:2:1 when D is large enough (>20h with h being the atomic diameter). The validity of the model is verified by the data of experiments, molecular dynamics simulations, and other theoretical models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have