Abstract

A model is developed to account for the size-dependent melting temperature of pure metallic and bimetallic nanowires, where the effects of the contributions of all surface atoms to the surface area, lattice and surface packing factors and the cross-sectional shape of the nanowires are considered. As the size decreases, the melting temperature functions of pure metallic and bimetallic nanowires decrease almost with the same size-dependent trend. Due to the inclusion of the above effects, the present model can also be applied to investigate the melting temperature depression rate of different low-dimensional system, accurately. The validity of the model is verified by the data of experiments and molecular dynamics simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.