Abstract
SIRT5 (sirtuin 5) is located in the mitochondria and plays an important role in biological processes such as maintaining the balance of lipid metabolism and promoting fatty acid oxidation mobilization. In this study, the bovine preadipocyte differentiation and obese mouse models were constructed; combined with transcriptome sequencing (RNA-seq) and morphological identification, the regulatory and molecular mechanisms underlying the effects of SIRT5 on bovine preadipocyte differentiation and lipid metabolism were studied. The results reveal that during the differentiation of preadipocytes, SIRT5 inhibited the expression of key genes that promote lipid formation and differentiation in fatty acid biosynthesis and PPAR pathways. SIRT5 significantly activated the adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) pathway and repressed the mitogen-activated protein kinase (MAPK) pathway. Eventually, SIRT5 significantly inhibited the differentiation of bovine preadipocytes and simultaneously inhibited lipid synthesis and lipid deposition in adipocytes. The verification experiments performed using obese mice also yielded consistent results in vivo.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have