Abstract

Single crystalline InN films with an absorption edge between 0.7 and 2 eV have been grown using a variety of different techniques, including conventional metal-organic vapor-phase epitaxy (MOVPE), ArF-laser assisted MOVPE (la-MOVPE), and plasma-assisted molecular-beam epitaxy (pa-MBE). Analysis of samples grown using different methods has led to important evidence for determining the actual band gap energy of InN. In an effort to find the origin of the change in absorption edge, this evaluation was focused on the la-MOVPE of InN. This deposition technique enables InN film deposition over a wide range of growth temperatures, ranging from room temperature to a very high temperature (700 °C). Characterization of InN films grown over a wide range of temperatures strongly suggests that oxygen contamination leads to a larger band gap absorption energy value than the actual value, even in the case of single crystalline films. In films grown at low temperatures, oxygen appeared to form an alloy, resulting in a larger absorption edge, whereas, in films grown at high temperatures oxygen was present as a donor, which resulted in a larger absorption edge due to a Burstein–Moss shift.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.