Abstract
The ability of SARS-CoV-2 to evade antiviral immune signaling in the airway contributes to the severity of COVID-19 disease. Additionally, COVID-19 is influenced by age and has more severe presentations in older individuals. This raises questions about innate immune signaling as a function of lung development and age. Therefore, we investigated the transcriptome of different cell populations of the airway epithelium using pediatric and adult lung tissue samples from the LungMAP Human Tissue Core Biorepository. Specifically, lung lobes were digested and cultured into a biomimetic model of the airway epithelium on an air-liquid interface. Cells were then infected with SARS-CoV-2 and subjected to single-cell RNA sequencing. Transcriptional profiling and differential expression analysis were carried out using Seurat. The clustering analysis identified several cell populations: club cells, proliferating epithelial cells, multiciliated precursor cells, ionocytes, and two biologically distinct clusters of ciliated cells (FOXJ1high and FOXJ1low). Interestingly, the two ciliated cell clusters showed different infection rates and enrichment of processes involved in ciliary biogenesis and function; we observed a cell-type-specific suppression of innate immunity in infected cells from the FOXJ1low subset. We also identified a significant number of genes that were differentially expressed in lung cells derived from children as compared to adults, suggesting the differential pathogenesis of SARS-CoV-2 infection in children versus adults. We discuss how this work can be used to identify drug targets to modulate molecular signaling cascades that mediate an innate immune response and begin to understand differences in COVID-19 outcomes for pediatric vs. adult populations.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have