Abstract
ObjectiveDNA extraction prior to polymerase chain reaction (PCR) amplification in genetic diagnoses of triplet repeat disorders (TRDs) is tedious and labour-intensive and has the limitations of sample contamination with foreign DNA, including that from preceding samples. Therefore, we aimed to develop a rapid, robust, and cost-effective method for expeditious genetic investigation of TRDs from whole blood as a DNA template. MethodsPeripheral blood samples were collected from 70 clinically suspected patients of progressive ataxia. The conventional method using genomic DNA and single-step Blood-Direct PCR (BD-PCR) method with just 2μl of whole blood sample were tested to amplify triplet repeat expansion in genes related to spinocerebellar ataxia (SCA) types 1, 2, 3, 12 and Friedreich's ataxia (FRDA). Post-PCR, the allele sizes were mapped and repeat numbers were calculated using GeneMapper and macros run in Microsoft Excel programmes. ResultsSuccessful amplification of target regions was achieved in all samples by both methods. The frequency of the normal and mutated allele was concordant between both methods, diagnosing 37% positive for a mutation in either of the candidate genes. The BD-PCR resulted in higher intensities of product peaks of normal and pathogenic alleles. ConclusionsThe nearly-accurate sizing of the normal and expanded allele was achieved in a shorter time (4–5h), without DNA extraction and any risk of cross contamination, which suggests the BD-PCR to be a reliable, inexpensive, and rapid method to confirm TRDs. This technique can be introduced in routine diagnostic procedures of other tandem repeat disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of the Neurological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.