Abstract

The inherited neurodegenerative disease Friedreich's ataxia (FRDA) is caused by GAA⋅TTC triplet repeat hyperexpansions within the first intron of the FXN gene, encoding the mitochondrial protein frataxin. Long GAA⋅TTC repeats cause heterochromatin-mediated gene silencing and loss of frataxin in affected individuals. We report the derivation of induced pluripotent stem cells (iPSCs) from FRDA patient fibroblasts by transcription factor reprogramming. FXN gene repression is maintained in the iPSCs, as are the global gene expression signatures reflecting the human disease. GAA⋅TTC repeats uniquely in FXN in the iPSCs exhibit repeat instability similar to patient families, where they expand and/or contract with discrete changes in length between generations. The mismatch repair enzyme MSH2, implicated in repeat instability in other triplet repeat diseases, is highly expressed in pluripotent cells and occupies FXN intron 1, and shRNA silencing ofMSH2 impedes repeat expansion, providing a possible molecular explanation for repeat expansion in FRDA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.