Abstract

Currently, common optical techniques to measure tissue oxygen saturation (StO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ) include time domain (TD), frequency domain (FD), and continuous wave (CW) near-infrared spectroscopy (NIRS). While TD- and FD-NIRS can provide absolute hemoglobin concentration, these systems are often complex and expensive. CW-NIRS, such as diffuse reflectance spectroscopy and spatially resolved spectroscopy (SRS), are simpler and more affordable, but they still require at least two source-detector separations. Here, we propose a single source-detector separation (SSDS) approach to measure StO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> using reflected intensities from three wavelengths. The accuracy of the SSDS-based StO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> measurement was verified using an optical simulation and an <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">in-vivo</i> experiment. Simulated spatially dependent reflectance was generated using the Virtual Tissue Simulator on a 1-layer model, which has StO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> ranging from 0% to 100%. SSDS calculation yielded an equivalent StO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> to the actual value (average error = 0.3% ± 0.5%). We then performed StO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> measurements on seven healthy volunteers in the prefrontal cortex during a simulated hypercapnia test using a CW-NIRS device. This device consists of a light source and two photodetectors, which are 30 mm and 40 mm away from the light source. The cerebral oxygen saturation was calculated using both the SRS approach, which uses the reflected intensities at both separations, and the SSDS approach, which employs the reflected intensities at either 30 mm or 40 mm separation. The SRS-based StO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> calculation was similar to the value calculated from the SSDS method (average difference = 5.0% ± 1.1%). This proposed method will help to advance the development of miniaturized technologies to monitor StO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> continuously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.