Abstract

Near-infrared spectroscopy (NIRS) measures slow hemodynamic signals noninvasively to indirectly infer the neuronal activity in the brain. However, it remains a controversy on whether this optical measurement technique can detect the optical neuronal signal, which reflects the optical changes directly associated with neuronal activity, within the visual cortex of human and non-human primates. By carefully reviewing the important factors in the detection of optical neuronal signals, we aim to investigate the feasibility of performing NIRS measurements of optical neuronal signals within the visual cortex in humans. To ensure a strong optical neuronal response, a full-field circular black and white reversing checkerboard stimulus was presented, and the reversal frequency was carefully chosen. We used a homemade continuous wave (CW) NIRS system with high detection sensitivity (of the order of 0.1pW) to record a large area of the visual cortex (approximately 6×14cm2). EEG was simultaneously acquired with the optical signal. Based on the mathematical morphology, we adapted the filter proposed by Gratton et al. to remove the influence of arterial pulsation and facilitate the detection and elimination of unknown artifacts from the data. We obtained reliable optical neuronal signals in 77% of the participants (10 out of 13). The amplitudes (latencies) of the obtained optical neuronal signals corresponding to the 785 and 850nm wavelengths were 0.017±0.003% (94.7±8.4ms) and 0.025±0.006% (99.0±7.7ms), respectively. There were no significant differences between the latencies of the N75 component of the visual evoked potential (VEP) and optical neuronal signals at either wavelength. This is the first study to report optical neuronal signals within the visual cortex in the intact human brain using a CW NIRS system. These results indicate the feasibility of measuring noninvasive optical neuronal signals using a CW NIRS system with high detection sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call