Abstract
Goal: Diagnosing the corpus-predominant gastritis index (CGI) which is an early precancerous lesion in the stomach has been shown its effectiveness in identifying high gastric cancer risk patients for preventive healthcare. However, invasive biopsies and time-consuming pathological analysis are required for the CGI diagnosis. Methods: We propose a novel gastric section correlation network (GSCNet) for the CGI diagnosis from endoscopic images of three dominant gastric sections, the antrum, body and cardia. The proposed network consists of two dominant modules including the scaling feature fusion module and section correlation module. The front one aims to extract scaling fusion features which can effectively represent the mucosa under variant viewing angles and scale changes for each gastric section. The latter one aims to apply the medical prior knowledge with three section correlation losses to model the correlations of different gastric sections for the CGI diagnosis. Results: The proposed method outperforms competing deep learning methods and achieves high testing accuracy, sensitivity, and specificity of 0.957, 0.938 and 0.962, respectively. Conclusions: The proposed method is the first method to identify high gastric cancer risk patients with CGI from endoscopic images without invasive biopsies and time-consuming pathological analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE open journal of engineering in medicine and biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.