Abstract

We present a low cost, single metal gate/high-k gate stack integration, which provides a very high performing NMOS coupled with a counter-doped PMOS for a 45nm low power (LP) CMOS technology. Inversion T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ox</sub> (T <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">inv</sub> ) values of 16Å/18Å (NMOS/PMOS) result in gate leakage current densities of 0.1/0.01 A/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and enable self-heated drive currents of 850/325μA/μm at 1nA/μm off-state leakage and V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dd</sub> =1V (900/340μA/μm non-self-heated). Additionally, the NMOS drive current of 1550uA/μm (1650μA/μm non-self-heated) at an I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">off</sub> =100nA/μm and V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">dd</sub> =1.2V is the highest reported for a hafnium-based high-k gate stack. The approach is compatible with a dual-gate oxide (DGO) module for I/O devices and allows optimization for performance and power typically only possible in triple gate oxide architectures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call