Abstract
In this study, a combination of ground-based particulate matter measurements in synergy with space-borne CALIOP lidar recordings, meteorological observations, and reanalysis models have been used to study atmospheric air pollution over Amman, Jordan. The measurement was conducted over a 24-month period spanning from January 2018 to the end of December 2019. The CALIOP aerosol profiles and aerosol layer products version 4.21, level 2, with 5 km horizontal resolution were used to evaluate the vertical structure of the atmospheric constituent over the Amman region. The particle depolarization ratio (PDR) was extracted from CALIOP recordings and has been utilized to classify the type of atmospheric aerosols. This method reveals that the atmosphere above Amman mostly contains three different aerosol types including coarse-mode dust, fine-mode dust (polluted dust), and non-dust aerosols (pollution). Aerosols with 0 < δp≤ 0.075 are categorized as pollution, aerosols with 0.075 < δp≤ 0.20 as polluted dust, and aerosols with 0.20 < δp≤ 0.40 are classified as dust. Both the one- and two-step POlarization-LIdar PHOtometer Networking (POLIPHON) approaches have been applied to the CALIOP aerosol profile product to retrieve the vertical profile of the optical and micro-physical properties of each aerosol type. Lofted-layer top heights and layer thickness in the atmosphere above Amman during the study period were also extracted from the CALIOP aerosol layer products. The highest frequency of occurrence was observed for layers with a top height of 0.5 to 2.5 km with a second smaller peak at 3.5 km. The maximum frequency of the lofted layers (40% of cases) were observed with layer thickness below 0.5 km. For layers with a top height lower than 500 m above ground level, the atmosphere was mostly impacted by polluted dust and pollution aerosols. On the other hand, for layers with a top height above 2500 m agl, the atmosphere was contaminated by depolarizing dust particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.