Abstract

Digital speckle pattern interferometry (DSPI) is an advanced technique for both in-plane and out-of-plane deformation measurements of diffuse surfaces in nanoscale. It has been widely used in aerospace engineering and other high-tech industries due to the advantages of non-contact, high-accuracy and full-field measurement. Traditionally, DSPI uses temporal phase shifting method to achieve precise deformation measurement, but it is only suitable for quasi-static deformation. Spatial-carrier method is another effective phase retrieval method used in DSPI and its validity has been verified in some DSPI setups. DSPI with spatial-carrier method enjoys the advantages of simple optical arrangement, easy operation, and above all, high-speed measurement of deformation. This paper introduces a dual-beam spatial-carrier digital speckle pattern interferometry system, with which in-plane and out-of-plane deformations can be measured simultaneously as well as quickly. In the optical setup, two lasers are employed to illuminate the measured object with different illumination angles, and two single-mode fibers server as carriers to transmit the reference beams. In-plane and out-of-plane deformations can be obtained by combining the phase maps of both channels. Theoretical discussion and experimental analysis are both presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call