Abstract

A Digital Speckle Pattern Interferometry (DSPI) system is developed for the real-time measuring and monitoring the out-of-plane surface deformation around tightened threaded fasteners that are used to clamp bolted assemblies. Spatial phase shifting is employed to quantitatively determine the distribution of phase data by introducing a spatial carrier fringe pattern to the speckle interferogram. This is achieved by leading the object and reference beams to two separate apertures. The configuration is also suitable for collecting the real-time deformation during bolt tightening. The experimental DSPI system is set-up with optical components on a vibration-isolation table. A Matlab software is developed for the image acquisition and phase data calculation, which yields the out-of-plane surface deformation caused by the bolt preload. An aluminum joint is used with an M12 steel fastener. For miniature screw application, however, a plastic joint is used for collecting data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.