Abstract

We introduce a regularization procedure to define electrostatic energies and forces in a slab system of thickness h that is periodic in two dimensions and carries a net charge. The regularization corresponds to a neutralization of the system by two charged walls and can be viewed as the extension to the two-dimensional (2D)+h geometry of the neutralization by a homogeneous background in the standard three-dimensional Ewald method. The energies and forces can be computed efficiently by using advanced methods for systems with 2D periodicity, such as MMM2D or P3M/ELC, or by introducing a simple background-charge correction to the Yeh-Berkowitz approach of slab systems. The results are checked against direct lattice sum calculations on simple systems. We show, in particular, that the Madelung energy of a 2D square charge lattice in a uniform compensating background is correctly reproduced to high accuracy. A molecular dynamics simulation of a sodium ion close to an air/water interface is performed to demonstrate that the method does indeed provide consistent long-range electrostatics. The mean force on the ion reduces at large distances to the image-charge interaction predicted by macroscopic electrostatics. This result is used to determine precisely the position of the macroscopic dielectric interface with respect to the true molecular surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.