Abstract

Several extensions and improvements have been made to the multilevel summation method (MSM) of computing long-range electrostatic interactions. These include pressure calculation, an improved error estimator, faster direct part calculation, extension to non-orthogonal (triclinic) systems, and parallelization using the domain decomposition method. MSM also allows fully non-periodic long-range electrostatics calculations which are not possible using traditional Ewald-based methods. In spite of these significant improvements to the MSM algorithm, the particle-particle particle-mesh (PPPM) method was still found to be faster for the periodic systems we tested on a single processor. However, the fast Fourier transforms (FFTs) that PPPM relies on represent a major scaling bottleneck for the method when running on many cores (because the many-to-many communication pattern of the FFT becomes expensive) and MSM scales better than PPPM when using a large core count for two test problems on Sandia's Redsky machine. This FFT bottleneck can be reduced by running PPPM on only a subset of the total processors. MSM is most competitive for relatively low accuracy calculations. On Sandia's Chama machine, however, PPPM is found to scale better than MSM for all core counts that we tested. These results suggest that PPPM is usually more efficient than MSM for typical problems running on current high performance computers. However, further improvements to MSM algorithm could increase its competitiveness for calculation of long-range electrostatic interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.