Abstract

We report on the results of theoretical simulations of the electron channeling in a bent silicon crystal. The dynamics of ultra-relativistic electrons in the crystal is computed using the newly developed part [1] of the MBN Explorer package [2,3], which simulates classical trajectories of in a crystalline medium by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. A Monte Carlo approach is employed to sample the incoming electrons and to account for thermal vibrations of the crystal atoms. The electron channeling along Si(110) crystallographic planes are studied for the projectile energies 195–855 MeV and different curvatures of the bent crystal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.