Abstract

In this paper, the design of a metamaterial ultra-wideband (UWB) antenna with a goal towards application in microwave imaging systems for detecting unwanted cells in human tissue, such as in cases of breast cancer, heart failure and brain stroke detection is proposed. The metamaterial unit cell is constructed using circular split ring resonator (CSRR) technique and wire, to attain a design layout that simultaneously exhibits both a negative magnetic permeability and a negative electrical permittivity and attached as superstrate in front of the UWB antenna. This design results in an astonishing negative refractive index that enables amplification of the radiated power of this reported antenna, and therefore, high antenna performance. A Rogers (RT5880) substrate material is used to design and print this reported antenna, and has the following characteristics: thickness of 0.51 mm, relative permeability of one, relative permittivity of 2.70 and loss tangent of 0.02. The metamaterial antenna is design to be operated at frequency between 300MHz to 30GHz which is suitable for biomedical application such as Microwave Imaging. The overall metamaterial antenna size is 90 mm × 50 mm × 0.51 mm. The design and simulation has been carried out using Computer Simulation Technology Microwave Studio (CST MWS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call