Abstract

A simulation of interdigitated back-contact silicon heterojunction (IBC-SHJ) solar cells was performed using a quantum transport model to consider the quantum effect at the crystalline/amorphous (c/a) heterojunction interface. It was found that the impact of the quantum effect on the open-circuit voltage is comparable to that of the interface defect density at the c/a interface, indicating the importance of implementation of the quantum model. The optimal back-contact design was also discussed from the viewpoint of mass production, in which the design rule is relaxed. The degradation of the conversion efficiency by widening the gap between the p- and n-aSi:H layers can be compensated by improving passivation quality at the c/a interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.