Abstract
Lithography-free interdigitated back-contact silicon heterojunction (IBC-SHJ) solar cells with dopant-free metal oxides (TiO2 and MoOx) as the carriers selective transport layers were investigated. Spin-coating and hot-wire reactive-sublimation deposition together with low cost mask technology were used to fabricate the solar cells. Insertion of a SiOx layer with the thickness of about 2.4 nm between the intrinsic amorphous Si (a-Si:H(i)) passivation layer and the spin-coated TiO2 layer greatly improves the solar cell performance due to the enhanced field-effect passivation of the a-Si:H(i)/SiOx/TiO2 layer stack. Efficiency up to 20.24% was achieved on the lithography-free and dopant-free IBC-SHJ devices with a-Si:H(i)/SiOx/TiO2 layer stack as the electron selective transport layer, a-Si:H(i)/MoOx as the hole selective transport layer, and WOx as the antireflection layer. The novel IBC-SHJ solar cells show significant advantages in simplification of the technology and process compared with the IBC-SHJ devices whose back surface pattering and carrier selective layers relied on photolithography and plasma enhanced chemical vapor deposition (PECVD).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.