Abstract

In this article, a three-dimensional finite element model (FEM) is used to predict the crack growth at the weld toe of a pre-fatigued T-joint that was repaired with a remelting technique. The numerical models were developed using the MSC.Marc software. Fatigue life is estimated by integrating the Paris-Erdogan law. The stress intensity factors are obtained by the virtual crack closure technique (VCCT).The T-welded joints, made of S355 steel, are obtained by covered electrode process and pre-cracked by fatigue. These welded joints were repaired by TIG dressing. The stress field generated by this dressing technique was estimated using a FEM model, presented in authors’ previous works. For the crack growth was used the VCCT three-dimensional model recently presented by the authors to predict the effect of overloads. The pre-existence of an elliptical crack at the weld toe, with a depth of 0.5 mm was considered. It is also studied the growth of pre-existing cracks which have been poorly repaired.It was observed that the TIG dressing produce residual compression stress fields on the weld toe that causes a delay in crack growth. The obtained results are compared with experimental ones. The fatigue’s lives obtained by simulations with the numerical model presented in this paper allows to evaluate the application conditions of TIG remelting technique in the repair of pre-cracked welded joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call