Abstract
The stress intensity factor estimated by the appropriate modeling of components is essential for the evaluation of crack growth behavior in stress corrosion cracking. For the appropriate modeling of a welded component with a crack, it is important to understand the effects of residual stress distribution and the geometry of the component on the stress intensity factor of the surface crack. In this study, the stress intensity factors of surface cracks under two assumed residual stress fields were calculated. As residual stress field, a bending type stress field (tension-compression) and a self-equilibrating stress field (tension-compression-tension) through the thickness were assumed, respectively. The geometries of the components were plate and piping. The assumed surface cracks for those evaluations were a long crack in the surface direction and a semi-elliptical surface crack. In addition, crack growth evaluations were conducted to clarify the effects of residual stress distribution and the geometry of the component. Here, the crack growth evaluation means simulating increments of crack depth and length using crack growth properties and stress intensity factors. The effects of residual stress distribution and component geometry on the stress intensity factor of surface cracks and the appropriate modeling of cracked components are discussed by comparing the stress intensity factors and the crack growth evaluations for surface cracks under residual stress fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.