Abstract

Coated nanoparticles have many potential applications; production of large quantities is feasible by atomic layer deposition (ALD) on nanoparticles in a fluidized bed reactor. However, due to the cohesive interparticle forces, nanoparticles form large agglomerates, which influences the coating process. In order to study this influence, the authors have developed a novel computational modeling approach which incorporates (1) fully resolved agglomerates; (2) a self-limiting ALD half cycle reaction; and (3) gas diffusion in the rarefied regime modeled by direct simulation Monte Carlo. In the computational model, a preconstructed fractal agglomerate of up to 2048 spherical particles is exposed to precursor molecules that are introduced from the boundaries of the computational domain and react with the particle surfaces until these are fully saturated. With the computational model, the overall coating time for the nanoparticle agglomerate has been studied as a function of pressure, fractal dimension, and agglomerate size. Starting from the Gordon model for ALD coating within a cylindrical hole or trench [Gordon et al., Chem. Vap. Deposition 9, 73 (2003)], the authors also developed an analytic model for ALD coating of nanoparticles in fractal agglomerates. The predicted coating times from this analytic model agree well with the results from the computational model for Df = 2.5. The analytic model predicts that realistic agglomerates of O(109) nanoparticles require coating times that are 3–4 orders of magnitude larger than for a single particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.