Abstract

Abstract African easterly waves (AEWs) exert significant influence on local and downstream high-impact weather including tropical cyclone (TC) genesis over the Atlantic. Accurate representation of AEWs in climate and weather prediction models therefore is necessary for skillful predictions. In this study, we examine simulated AEWs, including their evolution, vertical structure, and linkage to tropical cyclone genesis, in the NASA Goddard Earth Observing System Model, version 5 (GEOS-5) atmospheric global climate model. Identified by the leading empirical orthogonal function mode of time-filtered precipitation, the observed westward propagating AEWs along the southern track over the Atlantic are largely captured in GEOS-5, but with a slower phase speed and significantly weaker amplitude downstream off the West Africa coast. The weak downstream development of AEWs in GEOS-5 is accompanied by much reduced TC genesis over the main development region. Further analyses suggest that the slow westward propagation and weaker AEW amplitude downstream can be ascribed to a weak African easterly jet, while overestimated negative (positive) meridional potential vorticity (PV) gradients appear to the north (south) of 10°N in GEOS-5. The greatly overestimated positive meridional PV gradient to the south of 10°N is expected to generate strong horizontal stretching in the AEW wave pattern in the model, which hinders organization of convection and its feedback to sustain the AEW development. Persistent and vigorous AEW precipitation in the Guinea Highlands of the West Africa coast could also be responsible for reduced westward propagation of AEWs in the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.