Abstract

With distributed generation and battery storage technologies thriving in microgrids, the use of direct current (DC) microgrids in the building sector offers multiple advantages in energy efficiency and power quality compared with alternating current (AC) systems. This study developed a new concept of a loose-coupled bipolar DC building power system. The concept was used to design a real-world office building in Shenzhen, China. A power system model was developed to study the stability and control of the DC power system and to verify DC power quality. The design and modeling of the DC power control system is discussed in detail. The study developed a few common fault scenarios in DC building microgrids that were simulated in the MATLAB-Simulink environment to validate the design of a loose-coupled bipolar DC system. The results indicate that the proposed loose-coupled bipolar DC system schema, when implemented with proper control algorithms, can achieve good fault-tolerant performance with reliable power quality, even during disruptive system events.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.