Abstract
This study analyzes how the electricity demand and supply constitutions affect electricity independence and power trading within a community and between a community and a grid through simulation analysis. To that aim, we create a simulation model equipped with a community-building function and trading capability. We first construct a community consisting of various types of residential and industrial consumers, and renewable power plants deployed in the community. Residential and industrial consumers are characterized by a state of family/business and ownership and the use of energy equipment such as rooftop solar PV and stationary battery storage in their homes/offices. Consumers’ electricity demand is estimated from regression analyses using training data. Using the hypothetical community constructed for the analysis, the simulation model performs rule-based electricity trading and provides outputs comprising the total electricity demand in the community, the state of use of battery storage and solar PV, the trading volume, and the electricity independence rate of the community. From the simulation results, we discuss policy implications on the effective use of renewable energy and increasing electricity independence by fully utilizing battery and trading functions in a community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.