Abstract

In constructing a nanogrid for the effective use of renewable energy, such as solar power, the use of storage batteries is considered as a stabilizer for capturing renewable energy and outputting it in an energy-saving manner. Storage batteries that are included in a battery management system that includes their reuse in a vehicle are expected to be discharged into the market in large quantities over their long lifetime. Storage battery modules obtained from an unspecified number of electric vehicles (EVs), hybrid vehicles (HVs) and plug-in hybrid vehicles (PHVs) will vary in their charge/discharge capacity from module to module and it is crucial to determine the stability in terms of the state of charge and the state of health of the modules before their reuse. However, in an automotive storage battery module, multiple battery cells are connected in series or in parallel, and there is no established method of managing the variation in the output of each battery cell. Therefore, in this study, we propose an accurate charge–discharge state estimation technique for each cell using impedance characteristic evaluation based on an electrochemical method as a simple and quick method of grasping the charge–discharge performance of storage batteries equipped in a vehicle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call