Abstract
We give a unified treatment of the limit, as the size tends to infinity, of simply generated random trees, including both the well-known result in the standard case of critical Galton–Watson trees and similar but less well-known results in the other cases (i.e., when no equivalent critical Galton–Watson tree exists). There is a well-defined limit in the form of an infinite random tree in all cases; for critical Galton–Watson trees this tree is locally finite but for the other cases the random limit has exactly one node of infinite degree. The proofs use a well-known connection to a random allocation model that we call balls-in-boxes, and we prove corresponding theorems for this model. This survey paper contains many known results from many different sources, together with some new results.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have