Abstract

AbstractFor $k \geq 2$ , we prove that in a $C^{1}$ -open and $C^{k}$ -dense set of some classes of $C^{k}$ -Anosov flows, all Lyapunov exponents have multiplicity one with respect to appropriate measures. The classes are geodesic flows with equilibrium states of Holder-continuous potentials, volume-preserving flows, and all fiber-bunched Anosov flows with equilibrium states of Holder-continuous potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.