Abstract

The authors discuss a class of flows on 3-manifolds closely related to Anosov flows, which they call Anosov flows. These are flows which are Anosov outside of a finite number of periodic singular orbits'', such that each orbit has a Poincare section on which the first return map has an singularity'' for some n≥1, n≠2. If only 1-pronged singularities occur the flow is called V-Anosov; the authors observe, for example, that the geodesic flow of a compact, hyperbolic 2-orbifold is V-Anosov. The main theorem is that every closed 3-manifold has a Anosov flow. The theorem is proved by constructing a certain link L in the 3-sphere such that L is a universal branching link, so every closed 3-manifold M is a branched cover of the 3-sphere branched over L, and L is the set of orbits of some V-Anosov flow on S3, so the lifted flow is a Anosov flow on M. In the literature, a Anosov flow whose n-pronged singularities always satisfy n≥3 is called pseudo-Anosov. The main theorem should be contrasted with the fact that an Anosov or pseudo-Anosov flow can only occur on an aspherical 3-manifold—an irreducible 3-manifold with infinite fundamental group. The literature contains many constructions of Anosov and pseudo-Anosov flows, but it remains unknown exactly which aspherical 3-manifolds support such flows

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.