Abstract

Packet-switched network-on-chip (NoC) has provided a scalable solution to the communications for tiled multicore processors. However, the virtual channel (VC) buffers in the NoC consume significant dynamic and leakage power. To improve the energy efficiency of the router design, it is advantageous to use small buffer sizes while still maintaining throughput of the network. This article proposes two new virtual channel allocation (VA) mechanisms, termed fixed VC assignment with dynamic VC allocation (FVADA) and adjustable VC assignment with dynamic VC allocation (AVADA). VCs are designated to output ports and allocated to packets according to such assignment. This can help to reduce the head-of-line blocking. Such VC-output port assignment can also be adjusted dynamically to accommodate traffic changes. Simulation results show that both mechanisms can improve network throughput by 41% on average. Real traffic evaluation shows a network latency reduction of up to 66%. In addition, AVADA can outperform the baseline in throughput with only half of the buffer size. Finally, we are able to achieve comparable or better throughput than a previous dynamic VC allocator while reducing its critical path delay by 57%. Hence, the proposed VA mechanisms are suitable for low-power, high-throughput, and high-frequency NoC designs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call