Abstract

Natural convection within an enclosed circular annular cavity formed by two concentric vertical cylinders is of fundamental interest and practical importance. Generally, the assumption of axisymmetric thermal flow is adopted for simulating such natural convections and the validity of the assumption of axisymmetric thermal flow is still held even for some turbulent convection. Usually the Rayleigh numbers (Ra) of realistic flows are very high. However, the work to design suitable and efficient lattice Boltzmann (LB) models on such flows is quite rare. To bridge the gap, in this paper a simple LB subgrid-scale (SGS) model, which is based on our recent work [S. Chen, J. Tölke, and M. Krafczyk, Phys. Rev. E 79, 016704 (2009); S. Chen, J. Tölke, S. Geller, and M. Krafczyk, Phys. Rev. E 78, 046703 (2008)], is proposed for simulating convectional flow with high Ra within an enclosed circular annular cavity. The key parameter for the SGS model can be quite easily and efficiently evaluated by the present model. The numerical experiments demonstrate that the present model works well for a large range of Ra and Prandtl number (Pr). Though in the present study a popularly used static Smagorinsky turbulence model is adopted to demonstrate how to develop a LB SGS model for simulating axisymmetric thermal flows with high Ra, other state-of-the-art turbulence models can be incorporated into the present model in the same way. In addition, the present model can be extended straightforwardly to simulate other axisymmetric convectional flows with high Ra, for example, turbulent convection with internal volumetric heat generation in a vertical cylinder, which is an important simplified representation of a nuclear reactor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.