Abstract

In this paper, we discuss the incorporation of dynamic subgrid scale (SGS) models in the lattice-Boltzmann method (LBM) for large-eddy simulation (LES) of turbulent flows. The use of a dynamic procedure, which involves sampling or test-filtering of super-grid turbulence dynamics and subsequent use of scale-invariance for two levels, circumvents the need for empiricism in determining the magnitude of the model coefficient of the SGS models. We employ the multiple relaxation times (MRT) formulation of LBM with a forcing term, which has improved physical fidelity and numerical stability achieved by proper separation of relaxation time scales of hydrodynamic and non-hydrodynamic modes, for simulation of the grid-filtered dynamics of large-eddies. The dynamic procedure is illustrated for use with the common Smagorinsky eddy-viscosity SGS model, and incorporated in the LBM kinetic approach through effective relaxation time scales. The strain rate tensor in the SGS model is locally computed by means of non-equilibrium moments of the MRT-LBM. We also discuss proper sampling techniques or test-filters that facilitate implementation of dynamic models in the LBM. For accommodating variable resolutions, we employ conservative, locally refined grids in this framework. As examples, we consider the canonical anisotropic and inhomogeneous turbulent flow problem, i.e. fully-developed turbulent channel flow at two different shear Reynolds numbers R e ∗ of 180 and 395. The approach is able to automatically and self-consistently compute the values of the Smagorinsky coefficient, C S . In particular, the computed value in the outer or bulk flow region, where turbulence is generally more isotropic, is about 0.155 (or the model coefficient C = C S 2 = 0.024 ) which is in good agreement with prior data. It is also shown that the model coefficient becomes smaller and approaches towards zero near walls, reflecting the dampening of turbulent length scales near walls. The computed turbulence statistics at these Reynolds numbers are also in good agreement with prior data. The paper also discusses a procedure for incorporation of more general scale-similarity based SGS stress models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.