Abstract
Ultrafast laser radiation or beams of fast charged particles primarily excite the electronic system of a solid driving the target transiently out of thermal equilibrium. Apart from the nonequilibrium between the electrons and atoms, each subsystem may be far from equilibrium. From first principles, we derive the definition of various atomic temperatures applicable to electronically excited ensembles. It is shown that the definition of the kinetic temperature of atoms in the momentum subspace is unaffected by the excitation of the electronic system. When the electronic temperature differs from the atomic one, an expression for the configurational atomic temperature is proposed, applicable to the electronic-temperature-dependent interatomic potentials (such as ab initio molecular dynamics simulations). We study how the configurational temperature behaves during nonthermal phase transition, triggered by the evolution of the interatomic potential due to the electronic excitation. It is revealed that upon the ultrafast irradiation, the atomic system of a solid exists temporarily in a multitemperature state: separate equilibria in the momentum and configurational subspaces. Complete equilibration between the various atomic temperatures takes place at longer timescales, forming the energy equipartition. Based on these results, we propose a formulation of multitemperature heat transport equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.