Abstract
Selection hyper-heuristics (HHs) are randomised search methodologies which choose and execute heuristics during the optimisation process from a set of low-level heuristics. A machine learning mechanism is generally used to decide which low-level heuristic should be applied in each decision step. In this article, we analyse whether sophisticated learning mechanisms are always necessary for HHs to perform well. To this end we consider the most simple HHs from the literature and rigorously analyse their performance for the LeadingOnes benchmark function. Our analysis shows that the standard Simple Random, Permutation, Greedy, and Random Gradient HHs show no signs of learning. While the former HHs do not attempt to learn from the past performance of low-level heuristics, the idea behind the Random Gradient HH is to continue to exploit the currently selected heuristic as long as it is successful. Hence, it is embedded with a reinforcement learning mechanism with the shortest possible memory. However, the probability that a promising heuristic is successful in the next step is relatively low when perturbing a reasonable solution to a combinatorial optimisation problem. We generalise the "simple" Random Gradient HH so success can be measured over a fixed period of time , instead of a single iteration. For LeadingOnes we prove that the Generalised Random Gradient (GRG) HH can learn to adapt the neighbourhood size of Randomised Local Search to optimality during the run. As a result, we prove it has the best possible performance achievable with the low-level heuristics (Randomised Local Search with different neighbourhood sizes), up to lower-order terms. We also prove that the performance of the HH improves as the number of low-level local search heuristics to choose from increases. In particular, with access to low-level local search heuristics, it outperforms the best-possible algorithm using any subset of the heuristics. Finally, we show that the advantages of GRG over Randomised Local Search and Evolutionary Algorithms using standard bit mutation increase if the anytime performance is considered (i.e., the performance gap is larger if approximate solutions are sought rather than exact ones). Experimental analyses confirm these results for different problem sizes (up to ) and shed some light on the best choices for the parameter in various situations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.