Abstract

Simple and accurate circuit simulation models for high-voltage silicon carbide power MOSFETs and Schottky barrier diodes are presented and validated. The models are physics-based and consist of minimal number of model parameters that can be easily extracted from simple static I-V and C-V measurements. The models are used in a buck-boost bidirectional dc-dc converter, with and without an antiparallel Schottky diode. The efficiency of the converter was analyzed for synchronous and nonsynchronous operation of the switches. An optimal selection of the antiparallel Schottky diode is proposed to minimize the cost of the converter without compromising its efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.