Abstract

Sepsis is associated with enhanced generation of reactive oxygen species, which leads to multiple organ dysfunctions. Based on the potent antioxidant effects of silymarin, we investigated the putative protective role of silymarin against sepsis-induced oxidative damage in lung and brain tissues. Sepsis was induced by cecal ligation and perforation (CLP). Sham and CLP groups received either vehicle or silymarin (50 mg/kg, p.o.) or 150 mg/kg i.p. N-acetylcysteine (NAC) for 10 days prior and immediately after the operation. Six hours after the surgery, rats were decapitated and blood was collected for the measurement of proinflammatory cytokines (tumor necrosis factor-alpha, interleukin-1 beta [IL-1 beta], and IL-6) levels, lactate dehydrogenase activity, and total antioxidant capacity. Lung and brain samples were taken for the measurement of malondialdehyde and glutathione levels, myeloperoxidase activity, thromboplastic activity, and also for histological assessment. Formation of reactive oxygen species in tissue samples was monitored by using chemiluminescence technique with luminol and lusigenin probe. Sepsis increased serum TNF-alpha, IL-1 beta, IL-6 levels, and lactate dehydrogenase activity and decreased total antioxidant capacity. On the other hand, tissue glutathione levels were decreased while malondialdehyde levels and myeloperoxidase activity were increased in both the lung and the brain tissues due to CLP. Furthermore, luminol and lucigenin chemiluminescence were significantly increased in the CLP group, indicating the presence of the oxidative damage. Silymarine and NAC treatment reversed these biochemical parameters and preserved tissue morphology as evidenced by histological evaluation. Silymarin, like NAC, reduced sepsis-induced remote organ injury, at least in part, through its ability to balance oxidant-antioxidant status, to inhibit neutrophil infiltration, and to regulate the release of inflammatory mediators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.