Abstract

We have synthesized water-soluble, biocompatible, fluorescent, and stable silver/dendrimer nanocomposites that exhibit a potential for in vitro cell labeling. Amino-, hydroxyl-, and carboxyl-terminated ethylenediamine core generation 5 poly(amidoamine) dendrimers were utilized to prepare aqueous silver(I)-dendrimer complexes (with the molar ratio of 25 Ag+ per dendrimer) at the biologic pH of 7.4. Conversion of silver(I)-dendrimer complexes into dendrimer nanocomposites was achieved by irradiating the solutions with UV light to reduce the bound Ag+ cations to zerovalent Ag0 atoms, which were simultaneously trapped in the dendrimer network, resulting in the formation of {(Ag0)25-PAMAM_E5.NH2}, {(Ag0)25-PAMAM_E5.NGly}, and {(Ag0)25-PAMAM_E5.NSAH} dendrimer nanocomposites (DNC), respectively. The silver-DNCs were characterized by means of UV-vis, fluorescence spectroscopy, dynamic light-scattering, zeta potential measurements, high-resolution transmission electron microscopy, X-ray energy dispersive spectroscopy, and selected area electron diffraction. The cytotoxicity of dendrimers and related silver nanocomposites was evaluated using an XTT colorimetric assay of cellular viability. The cellular uptake of nanoparticles was examined by transmission electron and confocal microscopy. Results indicate that {(Ag0)25-PAMAM_E5.NH2}, {(Ag0-)25-PAMAM_E5.NGly}, and {(Ag0)25-PAMAM_E5.NSAH} form primarily single particles with diameters between 3 and 7 nm. The dendrimer nanocomposites are fluorescent, and their surface charge, cellular internalization, toxicity, and cell labeling capabilities are determined by the surface functionalities of dendrimer templates. The {(Ag0)25-PAMAM_E5.NH2} and {(Ag0)25-PAMAM_E5.NSAH} nanocomposites exhibit potential application as cell biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.