Abstract

The pseudomagnetic field effect may offer unique opportunities for the emergence of intriguing phenomena. To date, investigations into pseudomagnetic field effects on phonons have been limited to sound waves in metamaterials. The revelation of this exotic effect on the atomic vibration of natural materials remains elusive. Our simulations of twisted graphene nanoribbons reveal well-defined Landau spectra and sublattice polarization of phonon states, mimicking the behavior of Dirac Fermions in magnetic fields. Both valley-specified helical edge currents and snake orbits are obtained. Analysis of dynamics indicates that phonon Landau states have extended lifetimes, which are crucial for the realization of Landau-level lasing. Our findings demonstrate the occurrence of the phonon pseudomagnetic field effect in natural materials, which has important implications for the mechanical tuning of phonon quantum states at the atomic scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.