Abstract

In recent years, superhydrophobic coatings with self-cleaning abilities have attracted considerable attention. In this study, we introduced hydroxyl-terminated polydimethylsiloxane (OH-PDMS) into castor-oil-based waterborne polyurethanes and synthesized silicone-modified castor-oil-based UV-curable waterborne polyurethanes (SCWPU). Further, we identified the optimal amount of OH-PDMS to be added and introduced different amounts of micro- and nanoscale heptadecafluorodecyltrimethoxysilane-modified SiO2 particles (FAS-SiO2) to prepare rough-surface SCWPU coatings with dense micro- and nanostructures, thus realizing waterborne superhydrophobic coatings. The results show that when the OH-PDMS content was 11 wt% and the total addition of FAS-SiO2 particles was 50% (with a 1:1:1 ratio of 100 nm, 1 µm, and 10 nm particles), the coatings exhibited a self-cleaning ability and superhydrophobicity with a contact angle of (152.36 ± 2.29)° and a roll-off angle of (4.9 ± 1.0)°. This castor-oil-based waterborne superhydrophobic coating has great potential for waterproofing, anti-fouling, anti-corrosion, and other applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.