Abstract
This study presents the development of multifunctional protective clothing for disabled individuals using PBAT/PLA biopolymeric-based electrospun nanofibrous membranes. The fabric consists of a superhydrophobic electrospun nanofibrous cloth reinforced with silica nanoparticles. The resulting nanofiber membranes were characterized using FE-SEM, a CA goniometer, breathability and hydrostatic pressure resistance tests, UV-vis spectroscopy, thermal infrared photography, tensile tests, and nanoindentation. The results demonstrated the integration of superhydrophobicity, breathability, and mechanical improvements in the protective clothing. The nanofibrous porous structure of the fabric allowed breathability, while the silica nanoparticles acted as an effective infrared reflector to keep the wearer cool on hot days. The fabric's multifunctional properties make it suitable for various products, such as outdoor clothing and accessories for individuals with disabilities. This study highlights the importance of selecting appropriate textiles for protective clothing and the challenges faced by disabled individuals in terms of mobility, eating, and dressing. The innovative and purposeful design of this multifunctional protective clothing aimed to enrich the lives of individuals with disabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.