Abstract

Surface roughness and low surface energy are key elements for the artificial preparation of biomimetic superhydrophobic materials. However, the presence of micro-/nanostructures and the corresponding increase in roughness can increase light scattering, thereby reducing the surface transparency. Therefore, designing and constructing superhydrophobic surfaces that combine superhydrophobicity with high transparency has been a continuous research focus for researchers and engineers. In this study, a transparent superhydrophobic coating was constructed on glass substrates using hydrophobic fumed silica (HF-SiO2) and waterborne polyurethane (WPU) as raw materials, combined with a simple spray-coating technique, resulting in a water contact angle (WCA) of 158.7 ± 1.5° and a sliding angle (SA) of 6.2 ± 1.8°. Characterization tests including SEM, EDS, LSCM, FTIR, and XPS revealed the presence of micron-scale protrusions and a nano-scale porous network composite structure on the surface. The presence of HF-SiO2 not only provided a certain roughness but also effectively reduced surface energy. More importantly, the coating exhibited excellent water-repellent properties, extremely low interfacial adhesion, self-cleaning ability, and high transparency, with the light transmittance of the coated glass substrate reaching 96.1% of that of the bare glass substrate. The series of functional characteristics demonstrated by the transparent superhydrophobic HF-SiO2@WPU coating designed and constructed in this study will play an important role in various applications such as underwater observation windows, building glass facades, automotive glass, and goggles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.