Abstract
This review describes recent groundbreaking results in Si, Si/SiGe and dopant-based quantum dots, and it highlights the remarkable advances in Si-based quantum physics that have occurred in the past few years. This progress has been possible thanks to materials development for both Si quantum devices, and thanks to the physical understanding of quantum effects in silicon. Recent critical steps include the isolation of single electrons, the observation of spin blockade and single-shot read-out of individual electron spins in both dopants and gated quantum dots in Si. Each of these results has come with physics that was not anticipated from previous work in other material systems. These advances underline the significant progress towards the realization of spin quantum bits in a material with a long spin coherence time, crucial for quantum computation and spintronics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.