Abstract

Understanding how the structure of the unit-cell affects the cryogenic performance of a Si power Metal Oxide Semiconductor Field Effect Transistor (MOSFET) is an important step toward optimizing of the device for cryogenic operations. In this paper, numerical simulations of the Si power Double Diffused MOSFET’ (DMOS) are performed at room temperature and cryogenic temperatures. Physically based models for temperature dependent silicon properties are employed in the simulations. The performances of power DMOS’ with various unit-cell structures are compared at both room temperature and low temperatures. The effect of the cell structure on the on-resistance and breakdown voltage of the device are analyzed. The simulation results suggest that the device optimized for room temperature operation can be further optimized at cryogenic temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call