Abstract

The paper deals with computer simulations of 'silicon neurons', which are assemblies of CMOS circuits that generate the equivalents of the ionic currents and of the action potentials of real (biological) neurons. The circuit simulation program SPICE is used to simulate the generation of action potentials by a silicon neuron. Moreover, the equivalent circuits of silicon synapses are described and the behaviours of simple two- and three-neuron networks are analysed. Implications for the areas of neurobiology and formal neural networks are briefly considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.